Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
CBE Life Sci Educ ; 23(2): es2, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38442149

RESUMO

There is widespread recognition that undergraduate students in the life sciences must learn how to work in teams. However, instructors who wish to incorporate teamwork into their classrooms rarely have formal training in how to teach teamwork. This is further complicated by the application of synonymous and often ambiguous terminology regarding teamwork that is found in literature spread among many different disciplines. There are significant barriers for instructors wishing to identify and implement best practices. We synthesize key concepts in teamwork by considering the knowledge, skills, and attitudes (KSAs) necessary for success, the pedagogies and curricula for teaching those KSAs, and the instruments available for evaluating and assessing success. There are only a limited number of studies on teamwork in higher education that present an intervention with a control group and a formal evaluation or assessment. Moreover, these studies are almost exclusively outside STEM disciplines, raising questions about their extensibility. We conclude by considering how to build an evidence base for instruction that will empower students with the KSAs necessary for participating in a lifetime of equitable and inclusive teamwork.


Assuntos
Disciplinas das Ciências Biológicas , Estudantes , Humanos , Currículo , Aprendizagem , Conhecimento
2.
Appl Plant Sci ; 11(6): e11542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106534

RESUMO

Premise: A comparison of methods using different materials to exclude light from stems to prevent stem CO2 exchange (i.e., photosynthesis), without affecting stem conductance to water vapor, surface temperature, and relative humidity, was conducted on stems of avocado trees in California. Methods and Results: The experiment featured three materials: aluminum foil, paper-based wrap, and mineral-based paint. We examined stem CO2 exchange with and without the light exclusion treatments. We also examined stem surface temperature, relative humidity, and photosynthetic active radiation (PAR) under the cover materials. All materials reduced PAR and stem CO2 exchange. However, aluminum foil reduced stem surface temperature and increased relative humidity. Conclusions: Methods used to study stem CO2 exchange through light exclusion have historically relied on methods that may induce experimental artifacts. Among the methods tested here, mineral-based paint effectively reduced PAR without affecting stem surface temperature and relative humidity around the stem.


Premisa: Una comparación de diferentes métodos utilizando distintos materiales para bloquear la luz de los tallos y así reducir el intercambio de CO2 (fotosíntesis) sin afectar la conductancia del tallo al vapor de agua, su temperatura superficial y la humedad relativa fue llevado a cabo en tallos de árboles de aguacate en California. Metodología y resultados: El experimento se llevó a cabo utilizando tres materiales: papel de aluminio, papel para envoltura y pintura a base de minerales. Se examinó el intercambio de CO2 de los tallos con y sin los materiales de bloqueo de la luz. También se examinó la temperatura de la superficie del tallo, la humedad relativa y la radiación fotosintéticamente activa (PAR por sus siglas en inglés) debajo de los materiales usados para bloquear la luz. Todos los materiales redujeron PAR y el intercambio de CO2 del tallo. Sin embargo, el papel aluminio redujo también la temperatura de la superficie del tallo y aumento la humedad relativa. Conclusiones: Los métodos utilizados para estudiar el intercambio de CO2 de los tallos con el ambiente a través del bloqueo de la luz han sido métodos que pueden generar alteraciones no deseadas. Entre los métodos evaluados aquí, la pintura de base mineral fue efectiva reduciendo PAR sin alterar la temperatura superficial del tallo ni la humedad relativa alrededor de este.

3.
Nature ; 621(7977): 105-111, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612501

RESUMO

The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (Tcrit)1. However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. Here we found that pantropical canopy temperatures independently triangulated from individual leaf thermocouples, pyrgeometers and remote sensing (ECOSTRESS) have midday peak temperatures of approximately 34 °C during dry periods, with a long high-temperature tail that can exceed 40 °C. Leaf thermocouple data from multiple sites across the tropics suggest that even within pixels of moderate temperatures, upper canopy leaves exceed Tcrit 0.01% of the time. Furthermore, upper canopy leaf warming experiments (+2, 3 and 4 °C in Brazil, Puerto Rico and Australia, respectively) increased leaf temperatures non-linearly, with peak leaf temperatures exceeding Tcrit 1.3% of the time (11% for more than 43.5 °C, and 0.3% for more than 49.9 °C). Using an empirical model incorporating these dynamics (validated with warming experiment data), we found that tropical forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a potential tipping point in metabolic function, but remaining uncertainty in the plasticity and range of Tcrit in tropical trees and the effect of leaf death on tree death could drastically change this prediction. The 4.0 °C estimate is within the 'worst-case scenario' (representative concentration pathway (RCP) 8.5) of climate change predictions2 for tropical forests and therefore it is still within our power to decide (for example, by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of carbon, water and biodiversity3,4.


Assuntos
Aclimatação , Calor Extremo , Florestas , Fotossíntese , Árvores , Clima Tropical , Aclimatação/fisiologia , Austrália , Brasil , Calor Extremo/efeitos adversos , Aquecimento Global , Fotossíntese/fisiologia , Porto Rico , Desenvolvimento Sustentável/legislação & jurisprudência , Desenvolvimento Sustentável/tendências , Árvores/fisiologia , Folhas de Planta/fisiologia , Incerteza
4.
Plant Cell Environ ; 46(9): 2606-2627, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37283560

RESUMO

The combined study of carbon (C) and oxygen (O) isotopes in plant organic matter has emerged as a powerful tool for understanding plant functional responses to environmental change. The approach relies on established relationships between leaf gas exchange and isotopic fractionation to derive a series of model scenarios that can be used to infer changes in photosynthetic assimilation and stomatal conductance driven by changes in environmental parameters (CO2 , water availability, air humidity, temperature, nutrients). We review the mechanistic basis for a conceptual model, in light of recently published research, and discuss where isotopic observations do not match our current understanding of plant physiological response to the environment. We demonstrate that (1) the model was applied successfully in many, but not all studies; (2) although originally conceived for leaf isotopes, the model has been applied extensively to tree-ring isotopes in the context of tree physiology and dendrochronology. Where isotopic observations deviate from physiologically plausible conclusions, this mismatch between gas exchange and isotope response provides valuable insights into underlying physiological processes. Overall, we found that isotope responses can be grouped into situations of increasing resource limitation versus higher resource availability. The dual-isotope model helps to interpret plant responses to a multitude of environmental factors.


Assuntos
Carbono , Oxigênio , Isótopos de Carbono , Isótopos de Oxigênio , Folhas de Planta/fisiologia , Água
5.
Nat Commun ; 14(1): 2279, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080955

RESUMO

The timing and mechanisms of past hydroclimate change in northeast Mexico are poorly constrained, limiting our ability to evaluate climate model performance. To address this, we present a multiproxy speleothem record of past hydroclimate variability spanning 62.5 to 5.1 ka from Tamaulipas, Mexico. Here we show a strong influence of Atlantic and Pacific sea surface temperatures on orbital and millennial scale precipitation changes in the region. Multiple proxies show no clear response to insolation forcing, but strong evidence for dry conditions during Heinrich Stadials. While these trends are consistent with other records from across Mesoamerica and the Caribbean, the relative importance of thermodynamic and dynamic controls in driving this response is debated. An isotope-enabled climate model shows that cool Atlantic SSTs and stronger easterlies drive a strong inter-basin sea surface temperature gradient and a southward shift in moisture convergence, causing drying in this region.

6.
Glob Chang Biol ; 29(10): 2790-2803, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36792968

RESUMO

Although drought is known to negatively impact grassland functioning, the timing and magnitude of these impacts within a growing season remain unresolved. Previous small-scale assessments indicate grasslands may only respond to drought during narrow periods within a year; however, large-scale assessments are now needed to uncover the general patterns and determinants of this timing. We combined remote sensing datasets of gross primary productivity and weather to assess the timing and magnitude of grassland responses to drought at 5 km2 temporal resolution across two expansive ecoregions of the western US Great Plains biome: the C4 -dominated shortgrass steppe and the C3 -dominated northern mixed prairies. Across over 700,000 pixel-year combinations covering more than 600,000 km2 , we studied how the driest years between 2003-2020 altered the daily and bi-weekly dynamics of grassland carbon (C) uptake. Reductions to C uptake intensified into the early summer during drought and peaked in mid- and late June in both ecoregions. Stimulation of spring C uptake during drought was small and insufficient to compensate for losses during summer. Thus, total grassland C uptake was consistently reduced by drought across both ecoregions; however, reductions were twice as large across the more southern and warmer shortgrass steppe. Across the biome, increased summer vapor pressure deficit (VPD) was strongly linked to peak reductions in vegetation greenness during drought. Rising VPD will likely exacerbate reductions in C uptake during drought across the western US Great Plains, with these reductions greatest during the warmest months and in the warmest locations. High spatiotemporal resolution analyses of grassland response to drought over large areas provide both generalizable insights and new opportunities for basic and applied ecosystem science in these water-limited ecoregions amid climate change.


Assuntos
Secas , Pradaria , Estados Unidos , Ciclo do Carbono , Temperatura , Estações do Ano , Fatores de Tempo
7.
New Phytol ; 237(2): 392-407, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271615

RESUMO

Evolutionary relationships are likely to play a significant role in shaping plant physiological and structural traits observed in contemporary taxa. We review research on phylogenetic signal and correlated evolution in plant-water relation traits, which play important roles in allowing plants to acquire, use, and conserve water. We found more evidence for a phylogenetic signal in structural traits (e.g. stomatal length and stomatal density) than in physiological traits (e.g. stomatal conductance and water potential at turgor loss). Although water potential at turgor loss is the most-studied plant-water relation trait in an evolutionary context, it is the only trait consistently found to not have a phylogenetic signal. Correlated evolution was common among traits related to water movement efficiency and hydraulic safety in both leaves and stems. We conclude that evidence for phylogenetic signal varies depending on: the methodology used for its determination, that is, model-based approaches to determine phylogenetic signal such as Blomberg's K or Pagel's λ vs statistical approaches such as ANOVAs with taxonomic classification as a factor; on the number of taxa studied (size of the phylogeny); and the setting in which plants grow (field vs common garden). More explicitly and consistently considering the role of evolutionary relationships in shaping plant ecophysiology could improve our understanding of how traits compare among species, how traits are coordinated with one another, and how traits vary with the environment.


Assuntos
Folhas de Planta , Água , Filogenia , Folhas de Planta/fisiologia , Plantas , Fenótipo
8.
Am J Bot ; 109(8): 1262-1272, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35862815

RESUMO

PREMISE: Adaptive divergence across environmental gradients is a key driver of speciation. Precipitation seasonality gradients are common in the tropics, yet drought adaptation is nearly unexplored in neotropical understory herbs. Here, we examined two recently diverged neotropical spiral gingers, one adapted to seasonal drought and one reliant on perennial water, to uncover the basis of drought adaptation. METHODS: We combined ecophysiological trait measurements in the field and greenhouse with experimental and observational assessments of real-time drought response to determine how Costus villosissimus (Costaceae) differs from C. allenii to achieve drought adaptation. RESULTS: We found that drought-adapted C. villosissimus has several characteristics indicating flexible dehydration avoidance via semi-drought-deciduousness and a fast economic strategy. Although the two species do not differ in water-use efficiency, C. villosissimus has a more rapid growth rate, lower leaf mass per area, lower stem density, higher leaf nitrogen, and a strong trend of greater light-saturated photosynthetic rates. These fast economic strategy traits align with both field-based observations and experimental dry-down results. During drought, C. villosissimus displays facultative drought-deciduousness, losing lower leaves during the dry season and rapidly growing new leaves in the wet season. CONCLUSIONS: We revealed a drought adaptation strategy that has not, to our knowledge, previously been documented in tropical herbs. This divergent drought adaptation evolved recently and is an important component of reproductive isolation between C. villosissimus and C. allenii, indicating that adaptive shifts to survive seasonal drought may be an underappreciated axis of neotropical understory plant diversification.


PREMISA DEL ESTUDIO: La divergencia adaptativa a lo largo de gradientes ambientales es un factor clave de la especiación. Los gradientes de estacionalidad de la precipitación son comunes en los trópicos, sin embargo, la adaptación a la sequía es casi inexplorada en las hierbas neotropicales del sotobosque. Examinamos dos especies de caña agria neotropicales que divergieron recientemente, uno adaptado a la sequía estacional y otro que depende del agua perenne, para descubrir la base de la adaptación a la sequía. MÉTODOS: Combinamos mediciones ecofisiológicas en el campo y el invernadero con una evaluación experimental y observacional de la respuesta a la sequía en tiempo real para determinar cómo Costus villosissimus (Costaceae) difiere de C. allenii para lograr la adaptación a la sequía. RESULTADOS CLAVE: Encontramos que C. villosissimus, que está adaptado a la sequía, tiene varias características que indican que evita la deshidratación a través de la caducididad y una estrategia de vida rápida. Aunque las dos especies no difieren en la eficiencia del uso del agua, C. villosissimus tiene una tasa de crecimiento más rápida, menor masa foliar por área, menor densidad del tallo, mayor nitrógeno foliar y una fuerte tendencia de mayores tasas fotosintéticas saturadas de luz. Estos atributos de la estrategia de vida rápida se alinean tanto con las observaciones basadas en el campo como con los resultados experimentales de sequía. Para sobrevivir a la sequía, C. villosissimus es caducifolia facultativa, perdiendo hojas inferiores durante la estación seca y creciendo rápidamente hojas nuevas en la estación húmeda. CONCLUSIONES: Revelamos una estrategia de adaptación a la sequía que, hasta donde sabemos, no ha sido documentada previamente en hierbas tropicales. Esta adaptación divergente a la sequía evolucionó recientemente y es un componente importante del aislamiento reproductivo entre C. villosissimus y C. allenii, lo que indica que los cambios adaptativos para sobrevivir a la sequía estacional pueden ser un eje subestimado de la diversificación de las plantas del sotobosque neotropical.


Assuntos
Secas , Fotossíntese , Adaptação Fisiológica , Fotossíntese/fisiologia , Folhas de Planta , Estações do Ano , Água
9.
Nat Plants ; 8(4): 341-345, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35422082

RESUMO

Water use efficiency (WUE) provides a direct measure of the inextricable link between plant carbon uptake and water loss, and it can be used to study how ecosystem function varies with climate. We analysed WUE data from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), leveraging the high spatial resolution of ECOSTRESS to study the distribution of WUE values both within and among regions with different plant functional types. Our results indicate that despite wide local variability of WUE estimates, WUE tended to converge to common global optima (peaked distributions with variance <0.5 g C per kg H2O, kurtosis >3.0) for five of nine plant functional types (grassland, permanent wetland, savannah, deciduous broadleaf and deciduous needleleaf forest), and this convergence occurred in functional types that spanned distinct geographic regions and climates.


Assuntos
Ecossistema , Água , Clima , Florestas , Plantas
10.
Plant Cell Environ ; 45(6): 1954-1961, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297071

RESUMO

Diffuse light has been shown to alter plant leaf photosynthesis, transpiration and water-use efficiency. Despite this, the angular distribution of light for the artificial light sources used with common gas exchange systems is unknown. Here, we quantify the angular distribution of light from common gas exchange systems and demonstrate the use of an integrating sphere for manipulating those light distributions. Among three different systems, light from a 90° angle perpendicular to the leaf surface (±5.75°) was <25% of the total light reaching the leaf surface. The integrating sphere resulted in a greater range of possible distributions from predominantly direct light (i.e., >40% of light from a 90 ± 5.75° angle perpendicular to the leaf surface) to almost entirely diffuse (i.e., light from an even distribution drawn from a nearly 0° horizontal angle to a perpendicular 90° angle). The integrating sphere can thus create light environments that more closely mimic the variation in sunlight under both clear and cloudy conditions. In turn, different proportions of diffuse light increased, decreased or did not change photosynthetic rates depending on the plant species observed. This new tool should allow the scientific community to explore new and creative questions about plant function within the context of global climate change.


Assuntos
Fotossíntese , Folhas de Planta , Fenômenos Fisiológicos Vegetais , Transpiração Vegetal , Plantas , Água
11.
Epilepsy Behav Rep ; 17: 100509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35112075

RESUMO

Functional seizures can be challenging to properly diagnose, often leading to delays in treatment. The etiology of functional seizures is multifactorial, with psychological factors identified in many, but not all cases. Misdiagnosis may occur due to clinical features mimicking other medical conditions. Once a correct diagnosis is reached, delivery of definitive, evidence-based treatment may be challenging due to limited availability of specialized resources. Research shows psychological education and cognitive behavioral therapy (CBT) have the greatest efficacy. However, individual differences, including acceptance of the diagnosis, therapeutic alliance, duration of symptoms, comorbidities, and access to care may influence outcomes. There is a critical need for reports that can help identify barriers to effective diagnosis and treatment. We present the diagnosis and treatment of a woman who visited the emergency room after an attack of predominant left-sided paralysis, speech dysfunction and altered awareness. Following multiple daily episodes and visits to multiple medical practitioners, testing led to a diagnosis of functional seizures. While the patient was recommended to undergo a variety of therapeutic interventions, including CBT, she ultimately terminated treatment. In a subsequent interview, the patient revealed her personal experience with perceived limitations of acute management strategies. We explore the complexities of diagnosing and treating individuals with functional seizures.

12.
AoB Plants ; 14(1): plab073, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35035869

RESUMO

The study of plant functional traits and variation among and within species can help illuminate functional coordination and trade-offs in key processes that allow plants to grow, reproduce and survive. We studied 20 leaf, above-ground stem, below-ground stem and fine-root traits of 17 Costus species from forests in Costa Rica and Panama to answer the following questions: (i) Do congeneric species show above-ground and below-ground trait coordination and trade-offs consistent with theory of resource acquisition and conservation? (ii) Is there correlated evolution among traits? (iii) Given the diversity of habitats over which Costus occurs, what is the relative contribution of site and species to trait variation? We performed a principal components analysis (PCA) to assess for the existence of a spectrum of trait variation and found that the first two PCs accounted for 21.4 % and 17.8 % of the total trait variation, respectively, with the first axis of variation being consistent with a continuum of resource-acquisitive and resource-conservative traits in water acquisition and use, and the second axis of variation being related to the leaf economics spectrum. Stomatal conductance was negatively related to both above-ground stem and rhizome specific density, and these relationships became stronger after accounting for evolutionary relatedness, indicating correlated evolution. Despite elevation and climatic differences among sites, high trait variation was ascribed to individuals rather than to sites. We conclude that Costus species present trait coordination and trade-offs that allow species to be categorized as having a resource-acquisitive or resource-conservative functional strategy, consistent with a whole-plant functional strategy with evident coordination and trade-offs between above-ground and below-ground function. Our results also show that herbaceous species and species with rhizomes tend to agree with trade-offs found in more species-rich comparisons.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34594458

RESUMO

Discussion can be an important and powerful tool in efforts to build a more diverse, equitable, and inclusive future for STEM (i.e., science, technology, engineering, and mathematics). However, facilitating discussions on difficult, complex, and often uncomfortable issues, like racism and sexism, can feel daunting. We outline a series of steps that can be used by educators to facilitate productive discussions that empower everyone to listen, contribute, learn, and ultimately act to transform STEM.

14.
CBE Life Sci Educ ; 20(1): es1, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33635124

RESUMO

While student stress and anxiety are frequently cited as having negative effects on students' academic performance, the role that instructors can play in mitigating these challenges is often underappreciated. We provide summaries of different evidence-based strategies, ranging from changes in instructional strategies to specific classroom interventions, that instructors may employ to address and ameliorate student stress and anxiety. While we focus on students in science, technology, engineering, and mathematics, the strategies we delineate may be more broadly applicable. We begin by highlighting ways in which instructors can learn about and prepare to act to alleviate stress and anxiety. We then discuss how to better connect with students and build an inclusive, equitable, and empowering classroom environment. When coupled with strategies to change student evaluation and assessment, these approaches may collectively reduce student stress and anxiety, as well as improve student performance. We then discuss the roles that instructors may play in empowering students with skills that improve their time management, studying, and approach toward learning, with an eye toward ensuring their success across all their academic endeavors. We conclude by noting areas in which further research is needed to determine best practices for alleviating student stress and anxiety.


Assuntos
Estudantes , Universidades , Ansiedade/etiologia , Ansiedade/prevenção & controle , Engenharia , Humanos , Tecnologia
15.
New Phytol ; 225(1): 143-153, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418864

RESUMO

Most ecosystems experience frequent cloud cover resulting in light that is predominantly diffuse rather than direct. Moreover, these cloudy conditions are often accompanied by rain that results in wet leaf surfaces. Despite this, our understanding of photosynthesis is built upon measurements made on dry leaves experiencing direct light. Using a modified gas exchange setup, we measured the effects of diffuse light and leaf wetting on photosynthesis in canopy species from a tropical montane cloud forest. We demonstrate significant variation in species-level response to light quality independent of light intensity. Some species demonstrated 100% higher rates of photosynthesis in diffuse light, and others had 15% greater photosynthesis in direct light. Even at lower light intensities, diffuse light photosynthesis was equal to that under direct light conditions. Leaf wetting generally led to decreased photosynthesis, particularly when the leaf surface with stomata became wet; however, there was significant variation across species. Ultimately, we demonstrate that ecosystem photosynthesis is significantly altered in response to environmental conditions that are ubiquitous. Our results help to explain the observation that net ecosystem exchange can increase in cloudy conditions and can improve the representation of these processes in Earth systems models under projected scenarios of global climate change.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores/fisiologia , Planeta Terra , Ecossistema , Florestas , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Chuva , Árvores/efeitos da radiação , Água/fisiologia , Molhabilidade
16.
Plant Cell Environ ; 43(2): 510-523, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31732962

RESUMO

The 18 O signature of atmospheric water vapour (δ18 OV ) is known to be transferred via leaf water to assimilates. It remains, however, unclear how the 18 O-signal transfer differs among plant species and growth forms. We performed a 9-hr greenhouse fog experiment (relative humidity ≥ 98%) with 18 O-depleted water vapour (-106.7‰) on 140 plant species of eight different growth forms during daytime. We quantified the 18 O-signal transfer by calculating the mean residence time of O in leaf water (MRTLW ) and sugars (MRTSugars ) and related it to leaf traits and physiological drivers. MRTLW increased with leaf succulence and thickness, varying between 1.4 and 10.8 hr. MRTSugars was shorter in C3 and C4 plants than in crassulacean acid metabolism (CAM) plants and highly variable among species and growth forms; MRTSugars was shortest for grasses and aquatic plants, intermediate for broadleaf trees, shrubs, and herbs, and longest for conifers, epiphytes, and succulents. Sucrose was more sensitive to δ18 OV variations than other assimilates. Our comprehensive study shows that plant species and growth forms vary strongly in their sensitivity to δ18 OV variations, which is important for the interpretation of δ18 O values in plant organic material and compounds and thus for the reconstruction of climatic conditions and plant functional responses.


Assuntos
Isótopos de Oxigênio/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Água/metabolismo , Oxigênio/metabolismo , Desenvolvimento Vegetal , Poaceae/metabolismo , Chuva , Árvores/metabolismo , Volatilização , Tempo (Meteorologia)
17.
Plant Physiol ; 181(4): 1573-1586, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562233

RESUMO

Stomata control the gas exchange of terrestrial plant leaves, and are therefore essential to plant growth and survival. We investigated gas exchange responses to vapor pressure deficit (VPD) in two gray poplar (Populus × canescens) lines: wild type and abscisic acid-insensitive (abi1) with functionally impaired stomata. Transpiration rate in abi1 increased linearly with VPD, up to about 2 kPa. Above this, sharply declining transpiration was followed by leaf death. In contrast, wild type showed a steady or slightly declining transpiration rate up to VPD of nearly 7 kPa, and fully recovered photosynthetic function afterward. There were marked differences in discrimination against 13CO2 (Δ13C) and C18OO (Δ18O) between abi1 and wild-type plants. The Δ13C indicated that intercellular CO2 concentrations decreased with VPD in wild-type plants, but not in abi1 plants. The Δ18O reflected progressive stomatal closure in wild type in response to increasing VPD; however, in abi1, stomata remained open and oxygen atoms of CO2 continued to exchange with 18O enriched leaf water. Coupled measurements of Δ18O and gas exchange were used to estimate intercellular vapor pressure, e i In wild-type leaves, there was no evidence of unsaturation of e i, even at VPD above 6 kPa. In abi1 leaves, e i approached 0.6 times saturation vapor pressure before the precipitous decline in transpiration rate. For wild type, a sensitive stomatal response to increasing VPD was pivotal in preventing unsaturation of e i In abi1, after taking unsaturation into account, stomatal conductance increased with increasing VPD, consistent with a disabled active response of guard cell osmotic pressure.


Assuntos
Ácido Abscísico/metabolismo , Gases/metabolismo , Populus/fisiologia , Pressão de Vapor , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Umidade , Isótopos de Oxigênio , Folhas de Planta/citologia , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Populus/genética
18.
New Phytol ; 222(4): 1778-1788, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30779147

RESUMO

The widely documented phenomenon of nighttime stomatal conductance gsn could lead to substantial water loss with no carbon gain, and thus it remains unclear whether nighttime stomatal conductance confers a functional advantage. Given that studies of gsn have focused on controlled environments or small numbers of species in natural environments, a broad phylogenetic and biogeographic context could provide insights into potential adaptive benefits of gsn . We measured gsn on a diverse suite of species (n = 73) across various functional groups and climates-of-origin in a common garden to study the phylogenetic and biogeographic/climatic controls on gsn and further assessed the degree to which gsn co-varied with leaf functional traits and daytime gas-exchange rates. Closely related species were more similar in gsn than expected by chance. Herbaceous species had higher gsn than woody species. Species that typically grow in climates with lower mean annual precipitation - where the fitness cost of water loss should be the highest - generally had higher gsn . Our results reveal the highest gsn rates in species from environments where neighboring plants compete most strongly for water, suggesting a possible role for the competitive advantage of gsn .


Assuntos
Escuridão , Filogenia , Filogeografia , Estômatos de Plantas/fisiologia , Clima , Chuva
19.
Plant Cell Environ ; 42(2): 410-423, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30194766

RESUMO

Nearly all plant families, represented across most major biomes, absorb water directly through their leaves. This phenomenon is commonly referred to as foliar water uptake. Recent studies have suggested that foliar water uptake provides a significant water subsidy that can influence both plant water and carbon balance across multiple spatial and temporal scales. Despite this, our mechanistic understanding of when, where, how, and to what end water is absorbed through leaf surfaces remains limited. We first review the evidence for the biophysical conditions necessary for foliar water uptake to occur, focusing on the plant and atmospheric water potentials necessary to create a gradient for water flow. We then consider the different pathways for uptake, as well as the potential fates of the water once inside the leaf. Given that one fate of water from foliar uptake is to increase leaf water potentials and contribute to the demands of transpiration, we also provide a quantitative synthesis of observed rates of change in leaf water potential and total fluxes of water into the leaf. Finally, we identify critical research themes that should be addressed to effectively incorporate foliar water uptake into traditional frameworks of plant water movement.


Assuntos
Folhas de Planta/metabolismo , Água/metabolismo , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo
20.
Nat Ecol Evol ; 2(12): 1918-1924, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455442

RESUMO

Tropical forest leaf albedo (reflectance) greatly impacts how much energy the planet absorbs; however; little is known about how it might be impacted by climate change. Here, we measure leaf traits and leaf albedo at ten 1-ha plots along a 3,200-m elevation gradient in Peru. Leaf mass per area (LMA) decreased with warmer temperatures along the elevation gradient; the distribution of LMA was positively skewed at all sites indicating a shift in LMA towards a warmer climate and future reduced tropical LMA. Reduced LMA was significantly (P < 0.0001) correlated with reduced leaf near-infrared (NIR) albedo; community-weighted mean NIR albedo significantly (P < 0.01) decreased as temperature increased. A potential future 2 °C increase in tropical temperatures could reduce lowland tropical leaf LMA by 6-7 g m-2 (5-6%) and reduce leaf NIR albedo by 0.0015-0.002 units. Reduced NIR albedo means that leaves are darker and absorb more of the Sun's energy. Climate simulations indicate this increased absorbed energy will warm tropical forests more at high CO2 conditions with proportionately more energy going towards heating and less towards evapotranspiration and cloud formation.


Assuntos
Mudança Climática , Folhas de Planta/fisiologia , Árvores/fisiologia , Clima Tropical , Altitude , Dióxido de Carbono/análise , Florestas , Temperatura Alta , Modelos Teóricos , Peru , Folhas de Planta/química , Árvores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA